
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 11: File System
Implementation

11.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 11: File System Implementation

 Allocation Methods
 Free-Space Management

11.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 Introduction to file system structure.
 To discuss block allocation and free-block algorithms.

11.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File-System Structure
 File structure

 Logical storage unit
 Collection of related information

 The File system is organized into layers (levels).
 File system resides on secondary storage (disks)

 Provides efficient and convenient access to disk by allowing data to be
stored, located, and retrieved easily

 File control block – storage structure consisting of information about a file ,
including ownership, permissions, and location of the file contents

 Device driver controls the physical device

11.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Layered file system
Application programs

Logical file system

File organization module

Basic file system

i/o control

devices

11.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Allocation Methods

 An allocation method refers to how disk blocks are allocated for files:

 Contiguous allocation

 Linked allocation

 Indexed allocation

11.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Each file occupies a set of contiguous blocks on the disk

 Simple – only starting location (block #) and length (number of blocks)
are required

 The directory entry for each file indicates the address of the starting
block and the length of the area allocated for this file .

 Random access

 Wasteful of space (dynamic storage-allocation problem)

 External fragmentation

 Files cannot grow

11.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation of Disk Space

11.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Extent-Based Systems

 Many newer file systems (I.e. Veritas File System) use a modified
contiguous allocation scheme

 Extent-based file systems allocate disk blocks in extents

 An extent is a contiguous block of disks
 Extents are allocated for file allocation
 A file consists of one or more extents

11.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked Allocation

 Each file is a linked list of disk blocks: blocks may be scattered anywhere on
the disk.

pointerblock =

 Simple – need only starting address
 Free-space management system – no waste of space
 No random access
 a space is required for the pointers.

11.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked Allocation

11.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked Allocation

11.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File-Allocation Table
 An important variation on linked allocation is the use of a file-allocation table

(FAT).
 A section of disk at the beginning of each volume is set aside to contain

the table.
 The table has one entry for each disk block and is indexed by block

number.
 The FAT is used in much the same way as a linked list. The directory

entry contains the block number of the first block of the file.
 The table entry indexed by that block number contains the block number

of the next block in the file.
 This chain continues until the last block, which has a special end-of-file

value as the table entry.
 Unused blocks are indicated by a 0 table value

11.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File-Allocation Table

11.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation
 Brings all pointers together into the index block
 Each file has its own index block, which is an array of disk-block addresses.
 The ith entry in the index block points to the ith block of the file.

 Logical view

index table

11.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

11.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Indexed Allocation

11.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation (Cont.)

 Need index table
 Random access
 Dynamic access without external fragmentation, but have overhead

of index block
 Mapping from logical to physical in a file of maximum size of 256K

words and block size of 512 words. We need only 1 block for index
table

11.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked scheme

 An index block is normally one disk block. Thus, it can be read and written
directly by itself. To allow for large files, we can link together several index
blocks.
 For example, an index block might contain a small header giving the

name of the file and a set of the first 100 disk-block addresses.
 The next address (the last word in the index block) is nil (for a small file)

or is a pointer to another index block (for a large file).

11.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Combined Scheme: UNIX UFS (4K bytes per block)

11.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management

 To keep track of free disk space, the system maintains a free-space list.
The free-space list records all free disk blocks.

 To create a file, we search the free-space list for the required amount of
space and allocate that space to the new file.

 When a file is deleted, its disk space is added to the free-space list.

11.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bit Vector
 the free-space list is implemented as a bit map or bit vector.
 Each block is represented by 1 bit.

 If the block is free, the bit is 1;
 If the block is allocated, the bit is 0.

 For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13,
17, 18,25,26, and 27 are free and the rest of the blocks are allocated.

 The free-space bit map would be 001111001111110001100000011100000
 The main advantage of this approach is its relative simplicity and its

efficiency in finding the first free block or n consecutive free blocks on the
disk.

11.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management

 Bit vector (n blocks)

…
0 1 2 n-1

bit[i] =

 0 block[i] allocated

1 block[i] free

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

11.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management (Cont.)

 Bit map requires extra space
 Example:

block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 bits (or 32K bytes)

 Easy to get contiguous files

11.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked List

 Another approach to free-space management is to link together all the free
disk blocks, keeping a pointer to the first free block in a special location on
the disk and caching it in memory.

 This first block contains a pointer to the next free disk block, and so on.

11.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked List

11.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Grouping

 A modification of the free-list approach is to store the addresses of n free
blocks in the first free block.

 The first n-1 of these blocks are actually free. The last block contains the
addresses of another n free blocks, and so on.

 The addresses of a large number of free blocks can now be found quickly,
unlike the situation when the standard linked-list approach is used.

11.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Counting

 rather than keeping a list of n free disk addresses, we can keep the address of
the first free block and the number (n) of free contiguous blocks that follow the
first block.

 Each entry in the free-space list then consists of a disk address and a count.
 Although each entry requires more space than would a simple disk address, the

overall list will be shorter, as long as the count is generally greater than 1.

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 11

